Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Biol Macromol ; 222(Pt A): 661-670, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2041799

ABSTRACT

SARS-CoV-2 is a particularly transmissible virus that causes a severe respiratory disease known as COVID-19. Safe and effective vaccines are urgently needed to combat the COVID-19 pandemic. The receptor-binding domain (RBD) of SARS-CoV-2 spike protein elicits most neutralizing antibodies during viral infection and is an ideal antigen for vaccine development. In particular, RBD expressed by E. coli is amenable to low cost and high-yield manufacturability. The adjuvant is necessitated to improve the immunogenicity of RBD. IC28, a TLR5-dependent adjuvant, is a peptide from bacterial flagellin. Mannan is a ligand of TLR-4 or TLR-2 and a polysaccharide adjuvant. Here, IC28 and mannan were both covalently conjugated with RBD from E. coli. The conjugate (RBD-IC28-M) elicited high RBD-specific IgG titers, and a neutralization antibody titer of 201.4. It induced high levels of Th1-type cytokines (IFN-γ) and Th2-type cytokines (IL-5 and IL-10), along with high antigenicity and no apparent toxicity to the organs. The mouse sera of the RBD-IC28-M group competitively interfered with the interaction of RBD and ACE2. Thus, conjugation with IC28 and mannan additively enhanced the humoral and cellular immunity. Our study was expected to provide the feasibility to develop an affordable, easily scalable, effective vaccine SARS-CoV-2 vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Mice , Animals , COVID-19 Vaccines , SARS-CoV-2 , Mannans , Pandemics/prevention & control , Escherichia coli , COVID-19/prevention & control , Mice, Inbred BALB C , Antibodies, Neutralizing , Peptides , Cytokines , Antibodies, Viral
2.
Int Immunopharmacol ; 109: 108922, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945277

ABSTRACT

Safe and effective vaccines are urgently needed to combat the COVID-19 pandemic. However, the SARS-CoV-2 variants raise concerns about the effectiveness of vaccines. As a SARS-CoV-2 antigen target, ORF8 strongly inhibits the IFN-ß and NF-κB-responsive promoter, and can be potentially used for the development of SARS-CoV-2 vaccine. However, it is necessary to improve the immunogenicity of ORF8 by adjuvants or delivery systems. CRM197 was a carrier protein with the ability to activate T helper cells for antigens. Eight-arm PEG could conjugate multiple antigen molecules in one entity with inherent adjuvant effect. In the present study, ORF8 was conjugated with CRM197 and 8-arm PEG, respectively. The cellular and humoral immune responses to the conjugates (ORF8-CRM and ORF8-PEG) were evaluated in the BALB/c mice. As compared with ORF8-CRM and ORF8 administrated with aluminum adjuvant (ORF8/AL), ORF8-PEG induced a higher ORF8-specific IgG titer (2.6 × 104), higher levels of cytokines (IFN-γ, TNF-α, IFN-ß, and IL-5), stronger splenocyte proliferation. Thus, conjugation with 8-arm PEG was an effective method to improve the immune response to ORF8. Moreover, ORF8-PEG did not lead to apparent toxicity to the cardiac, liver and renal functions. ORF8-PEG was expected to act as an effective vaccine to provide the immune protection against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic , Animals , COVID-19 Vaccines , Humans , Mice , Pandemics
3.
World J Clin Cases ; 9(24): 6969-6978, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1431163

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2, poses a significant threat to public health worldwide, and diabetes is considered a risk factor for the rapid progression and poor prognosis of COVID-19. Limited immune function is a clinical feature of COVID-19 patients, and diabetes patients have defects in innate and adaptive immune functions, which may be an important reason for the rapid progression and poor prognosis of COVID-19 in patients with diabetes. We review the possible multiple effects of immune impairment in diabetic patients on the immune responses to COVID-19 to provide guidance for the diagnosis and treatment of diabetic patients with COVID-19.

4.
Chinese Journal of Emergency Medicine ; 29(7):901-907, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1344408

ABSTRACT

Objective: To analyze the clinical characteristics of patients with novel coronavirus pneumonia (COVID-19) and the factors influencing mild eases developing into severe cases, so as to provide a basis for clinical screening, prevention and treatment of potential severe cases.

5.
Eng Life Sci ; 21(6): 453-460, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1230200

ABSTRACT

SARS-CoV-2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID-19. Spike protein of SARS-CoV-2 mediates viral entry into host cells by binding ACE2 through the receptor-binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD-1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD-1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD-1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD-2). The secondary structure and tertiary structure of RBD-1 were largely maintained without glycosylation. In particular, the major ß-sheet content of RBD-1 was almost unaltered. RBD-1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10-8 M. Thus, RBD-1 was expected to apply in the vaccine development, screening drugs and virus test kit.

SELECTION OF CITATIONS
SEARCH DETAIL